Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations.

نویسندگان

  • Chang Cui
  • Jian Sun
چکیده

Due to elastic modulus mismatch between the different layers in all-ceramic dental restorations, high tensile stress concentrates at the interface between the ceramic core and cement. In natural tooth structure, stress concentration is reduced by the functionally graded structure of dentin-enamel junction (DEJ) which interconnects enamel and dentin. Inspired by DEJ, the aim of this study was to explore the optimum design of a bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations to achieve excellent stress reduction and distribution. Three-dimensional finite element model of a multi-layer structure was developed, which comprised bilayered ceramic, bio-inspired FGM layer, cement, and dentin. Finite element method and first-order optimization technique were used to realize the optimal bio-inspired FGM layer design. The bio-inspired FGM layer significantly reduced stress concentration at the interface between the crown and cement, and stresses were evenly distributed in FGM layer. With the optimal design, an elastic modulus distribution similar to that in DEJ occurred in the FGM layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-inspired dental multilayers: effects of layer architecture on the contact-induced deformation.

The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural t...

متن کامل

Experimental Investigation of FGM Dental Implant Properties Made from Ti/HA Composite

Although titanium/hydroxyapatite composite is an attractive material for dental implants, it would be more useful if it could be produced as a functionally graded material (FGM). In this paper, microstructure and microhardness of a five-layer titanium/hydroxyapatite functionally graded material has been investigated. First, titanium and hydroxyapatite (HA) powders were mixed with the Ti to HA v...

متن کامل

Dental prostheses mimic the natural enamel behavior under functional loading: A review article

Alumina- and zirconia-based ceramic dental restorations are designed to repair functionality as well as esthetics of the failed teeth. However, these materials exhibited several performance deficiencies such as fracture, poor esthetic properties of ceramic cores (particularly zirconia cores), and difficulty in accomplishing a strong ceramic-resin-based cement bond. Therefore, improving the mech...

متن کامل

FGM ROTATING DISC FABRICATE BY Al/Al2O3

Our aim of is to develop a processing method for a rotating disc made of functionally graded materials (FGM), by stacking the slurry, layer by layer in a radial direction. A three-layer functionally graded material of Al/Al2O3 is fabricated with compositions of 10, 20, 30 vol.% Al2O3. The ceramic composition increases from the discs inner (centre) to the outer. The combination of these material...

متن کامل

An Investigation of Stress and Deformation States of Rotating Thick Truncated Conical Shells of Functionally Graded Material

The present study aims at investigating stress and deformation behavior of rotating thick truncated conical shells subjected to variable internal pressure. Material prpperties of the shells are graded along the axial direction by Mori-tanaka scheme, which is achieved by elemental gradation of the properties.Governing equations are derived using principle of stsionary total potential (PSTP) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials journal

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2014